Tree domination polynomial of some graphs
نویسندگان
چکیده
منابع مشابه
TOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
متن کاملDomination parameters of Cayley graphs of some groups
In this paper, we investigate domination number, $gamma$, as well as signed domination number, $gamma_{_S}$, of all cubic Cayley graphs of cyclic and quaternion groups. In addition, we show that the domination and signed domination numbers of cubic graphs depend on each other.
متن کاملSome Families of Graphs whose Domination Polynomials are Unimodal
Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولComplementary Tree Domination in Splitting Graphs of Graphs
Let G = (V, E) be a simple graph. A dominating set D is called a complementary tree dominating set if the induced subgraph is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by ctd(G). For a graph G, let V(G) = {v : v V(G)} be a copy of V(G). The splitting graph Sp(G) of G is the graph with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Malaya Journal of Matematik
سال: 2019
ISSN: 2319-3786,2321-5666
DOI: 10.26637/mjm0s01/0080